Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.).
نویسندگان
چکیده
To study the mechanisms of inducible disease resistance in conifers, changes in transcript accumulation in roots of Norway spruce (Picea abies (L.) Karst.) seedlings exposed to the root rot pathogen Ceratobasidium bicorne Erikss. and Ryv. (anamorph: Rhizoctonia sp.) were monitored by differential display (DD). Because C. bicorne attacks root tips, a desiccation treatment was added to exclude genes induced by pathogen-related desiccation stress. The DD analysis was defined by the use of 11 sets of primers, covering about 5% of the transcriptome. A comparison of gene expression in control, desiccation- and pathogen-stressed roots revealed 36 pathogen-induced gene transcripts. Based on database searches, these transcripts were assigned to four groups originating from spruce mRNA (25 transcripts), rRNA (five transcripts), fungal mRNA (two transcripts) and currently unknown cDNAs (four transcripts). Real-time PCR was applied to verify and quantify pathogen-induced changes in transcript accumulation. Of the 18 transcripts tested, nine were verified to be Norway spruce gene transcripts up-regulated from 1.3- to 66-fold in the infected roots. Four germin-like protein isoforms, a peroxidase and a glutathione S-transferase, all implicated in oxidative processes, including the oxidative burst, were predicted from sequence similarity searches. Seven class IV chitinase isoforms implicated in fungal cell wall degradation and a nucleotide binding site-leucine rich repeat (NBS-LRR) disease resistance protein homologue related to pathogen recognition were identified. Several transcript species, such as the NBS-LRR homologue and the germin-like protein homologues, have not previously been identified as pathogen-inducible genes in gymnosperms.
منابع مشابه
Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in Strawberry Black Root Rot.
A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown ...
متن کاملNew Anastomosis Group G (AG-G) of binucleate Rhizoctonia sp., the causal agent of root rot disease on miniature roses in Iran
Rhizoctonia-like fungi were isolated from the infected roots of miniature rose (Rosa hybrida cv. Linda) plant with chlorosis and necrosis symptoms, grown in commercial glasshouse in Rafsanjan, Iran, during the autumn of 2011. All of the isolates were identified as binucleate Rhizoctonia sp. on the basis of hyphal characteristics and nuclei number. They were tested for detection of the anastomos...
متن کاملSuppression of plant defence response by a mycorrhiza helper bacterium.
The aim of the present study was to determine whether the mycorrhiza helper bacterium Streptomyces sp. AcH 505 could serve as a biocontrol agent against Heterobasidion root and butt rot. Bacterial influence on mycelial growth of Heterobasidion sp. isolates, on the colonization of wood discs and Norway spruce (Picea abies) roots was determined. The effect of AcH 505 on plant photosynthesis, pero...
متن کاملRapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay
Dry root rot (DRR) caused by the fungus Rhizoctonia bataticola (Taub.) Butler, is an emerging disease in chickpea. The disease is often mistaken with other root rots like Fusarium wilt, collar rot and black root rot in chickpea. Therefore, its timely and specific detection is important. Current detection protocols are either based on mycological methods or on protocols involving DNA amplificati...
متن کاملThe reaction zone is a unique plant defense found in trees: differentially expressed genes and cell wall changes
Heterobasidion annosum senso lato is the most devastating pathogen of conifers such as Norway spruce in Europe. This pathogen enter Norway spruce trees trough the roots or wounds and colonizes the tree from within, growing as a saprophyte when established within the dead heartwood and acting as a necrotroph when in contact with living host tissue. We have examined the host response in Norway sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2005